Modifications of Lusin's example of Σ^1_1 -complete set Łukasz Mazurkiewicz Szymon Żeberski Wrocław University of Science and Technology Winter School 2022, Hejnice # Lusin's example ### Theorem (Lusin) Set $$L = \{x \in (\omega \setminus \{0\})^{\omega} : (\exists k_0 < k_1 < k_2 < \ldots)(\forall i)(x(k_i)|x(k_{i+1}))\}$$ is Σ_1^1 -complete. # Lusin's example ### Theorem (Lusin) Set $$L = \{x \in (\omega \setminus \{0\})^{\omega} : (\exists k_0 < k_1 < k_2 < \ldots)(\forall i)(x(k_i)|x(k_{i+1}))\}$$ is Σ_1^1 -complete. Now let X be any countable set and \leq_X an ordering of X. Define: $$L_X = \{ y \in X^{\omega} : (\exists k_0 < k_1 < k_2 < \ldots)(\forall i)(y(k_i) \leqslant_X y(k_{i+1})) \}.$$ # Lusin's example ### Theorem (Lusin) Set $$L = \{x \in (\omega \setminus \{0\})^{\omega} : (\exists k_0 < k_1 < k_2 < \ldots)(\forall i)(x(k_i)|x(k_{i+1}))\}$$ is Σ_1^1 -complete. Now let X be any countable set and \leq_X an ordering of X. Define: $$L_X = \{ y \in X^{\omega} : (\exists k_0 < k_1 < k_2 < \ldots)(\forall i)(y(k_i) \leqslant_X y(k_{i+1})) \}.$$ #### Fact For every (X, \leq_X) set L_X is analytic. ### Fact If X is finite, $L_X = X^{\omega}$. #### Fact If X is finite, $L_X = X^{\omega}$. #### Fact If $\leq_X = \{(x, x) : x \in X\}$, then L_X is a Borel set. $$L_{=} = L_X = \{ y \in X^{\omega} : (\exists x \in X)(\forall n \in \omega)(\exists k > n)(y(k) = x) \}$$ #### Fact If X is finite, $L_X = X^{\omega}$. #### Fact If $\leq_X = \{(x, x) : x \in X\}$, then L_X is a Borel set. $$L_{=} = L_X = \{ y \in X^{\omega} : (\exists x \in X) (\forall n \in \omega) (\exists k > n) (y(k) = x) \}$$ #### Fact If $X = \mathbb{Z}$ and $\leq_X = \leq$, then L_X is a Borel set. $$L_{\mathbb{Z}} = L_{=} \cup \{ y \in \mathbb{Z}^{\omega} : (\forall n \in \mathbb{Z}) (\exists k \in \omega) (y(k) > n) \}$$ #### Fact If X is finite, $L_X = X^{\omega}$. #### Fact If $\leq_X = \{(x, x) : x \in X\}$, then L_X is a Borel set. $$L_{=} = L_X = \{ y \in X^{\omega} : (\exists x \in X)(\forall n \in \omega)(\exists k > n)(y(k) = x) \}$$ #### Fact If $X = \mathbb{Z}$ and $\leq_X = \leq$, then L_X is a Borel set. $$L_{\mathbb{Z}} = L_{=} \cup \{ y \in \mathbb{Z}^{\omega} : (\forall n \in \mathbb{Z}) (\exists k \in \omega) (y(k) > n) \}$$ #### Fact If (X, \leq_X) is a well-ordering, then $L_X = X^{\omega}$. # Result for Q #### Theorem If $X = \mathbb{Q}$ and $\leq_X = \leq$, then L_X is Σ_1^1 -complete. # Result for Q #### Theorem If $X = \mathbb{Q}$ and $\leq_X = \leq$, then L_X is Σ^1_1 -complete. We will construct a Borel function $f: Trees \to \mathbb{Q}^{\omega}$ such that $f^{-1}(L_X) = IF$. Let σ_n be enumeration of $\omega^{<\omega}$ satisfying $$\sigma_n \subseteq \sigma_m \implies n < m$$ and $\varphi:\omega^{<\omega}\to\mathbb{Q}$: $$\varphi(x) = \left(0.\underbrace{000\ldots 0}_{x_0} 1 \underbrace{000\ldots 0}_{x_1} 1 \underbrace{000\ldots 0}_{x_2} 1 \ldots 1\right)_2.$$ Now define $$f(T)(n) = \begin{cases} \varphi(\sigma_n), & \sigma_n \in T \\ -n, & \sigma_n \notin T \end{cases}.$$ #### **Theorem** - if $|\overline{X}| = \omega$, L_X is Borel, - if $|\overline{X}| = \mathfrak{c}$, X contains a \leq -dense subset. #### **Theorem** - if $|\overline{X}| = \omega$, L_X is Borel, - if $|\overline{X}| = \mathfrak{c}$, X contains a \leq -dense subset. - when $|\overline{X}| = \omega$, $L_X = \bigcup_{g \in \overline{X}} L_g$, where L_g is Borel, #### **Theorem** - if $|\overline{X}| = \omega$, L_X is Borel, - if $|\overline{X}| = \mathfrak{c}$, X contains a \leq -dense subset. - when $|\overline{X}| = \omega$, $L_X = \bigcup_{g \in \overline{X}} L_g$, where L_g is Borel, - when \overline{X} contains an interval [a,b], simply take $X \cap [a,b]$, #### Theorem - if $|\overline{X}| = \omega$, L_X is Borel, - if $|\overline{X}| = \mathfrak{c}$, X contains a \leq -dense subset. - when $|\overline{X}| = \omega$, $L_X = \bigcup_{g \in \overline{X}} L_g$, where L_g is Borel, - when \overline{X} contains an interval [a,b], simply take $X \cap [a,b]$, - when X is dense-in-itself, \overline{X} is NWD perfect set, from which we can construct \leqslant -dense set, #### **Theorem** - if $|\overline{X}| = \omega$, L_X is Borel, - if $|\overline{X}| = \mathfrak{c}$, X contains a \leq -dense subset. - when $|\overline{X}| = \omega$, $L_X = \bigcup_{g \in \overline{X}} L_g$, where L_g is Borel, - when \overline{X} contains an interval [a,b], simply take $X \cap [a,b]$, - when X is dense-in-itself, \overline{X} is NWD perfect set, from which we can construct \leqslant -dense set, - when X is scattered, \overline{X} contains a NWD perfect C. Furthermore it can be shown that $$\overline{X \backslash C} \supseteq C$$. ### Corollary Let (X, \leq_X) be a linear order. Then L_X is Σ^1_1 -complete if and only if X contains a \leq_X -dense subset. #### Question What about partial orderings? Thank you for attention.